Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.10

BS.

04/01/22

CONTINUOUS INTERNAL EVALUATION - 2

Dept:BS	Sem / Div: III/A,B	Sub:Transform Calculus,Fourier Series and Numerical Techniques	S Code:18MAT31
Date:11-01-22	Time: 9:30-11:00	Max Marks: 50	Elective:N

Note: Answer any 2 full questions, choosing one full question from each part.

QN	Questions	Marks	RBT	CO's		
	PARTA					
1 a	Find (I) L[cost cos2t cos3t] (ii) $L[\frac{1-cost}{t}]$	8	L2	CO1		
b	A periodic function of period 'a' is defined by $f(t) = \begin{cases} E, & 0 < t < \frac{a}{2} \\ -E, & \frac{a}{2} < t < a \end{cases}$ Then Show that $L[f(t)] = \frac{E}{S} \tanh(\frac{as}{4})$	8	L3	CO1		
С	Solve: $y''(t)+5y'(t)+6y(t)=5e^{2t}$ with $y(0)=2, y^{1}(0)=1$ by using Laplace Transform	9	L2	CO1		
OR						
2 a	Express the following function in terms of Unit Step function and hence find its Laplace Transform where $f(t) = \begin{cases} cost, & 0 < t < \pi \\ cos2t, & \pi < t < 2\pi \\ cos3t, & t > 2\pi \end{cases}$	8	L2	COI		

Page: 1 / 2

Find $L^{-1}\left[\frac{s^2}{(s^2+a^2)^2}\right]$ using Convolution theorem		LZ	COI				
Find (i) $L^{-1}\left[\frac{s+3}{(s^2-4s+13)}\right]$ (ii) $L^{-1}\left[\frac{1}{3}\log\left(\frac{s^2+b^2}{s^2+a^2}\right)\right]$	9	L2	CO1				
PART B							
3 a Find Z transform of (i) sinhnθ (ii) coshnθ	8	L2	CO3				
Find the Inverse Z transform of $\frac{3z^2+2z}{(5z-1)(5z+4)}$	8	L2	CO3				
c Solve the difference equation $u_{n+2}-3u_{n+1}+2u_n=0$ with $u_0=0$, $u_1=-1$	9	L3	CO3				
OR							
Find the Z transform of (i) $\cos\left[\frac{n\pi}{2} + \frac{\pi}{4}\right]$ (ii) $\sin(3n+5)$	8	L2	CO3				
b Find the Inverse Z transform of $\frac{z}{(z-3)(z-2)}$	8	L2	CO3				
c Solve the difference equation $u_{n+2}+6u_{n+1}+9u_n=2^n$ with $u_0=0, u_1=0$	9	L3	CO3				

Prepared by: Ravishankar N K

HOD: M. Ramananda Kamath